Alternativa E
Questão de PA
an = a1 + (n – 1) . r
an = 12 + (n – 1) . 2
an = 12 + 2n – 2
Sn = n . (a1 + an) / 2
620 = n . (12 + 12 + 2n – 2) / 2
620 . 2 = n . (22 + 2n)
1240 = 22n + 2n²
-2n² – 22n + 1240 = 0
2n² + 22n – 1240 = 0
n² + 11n – 620 = 0
∆ = b² – 4ac
∆ = 11² – 4 . 1 . (-620)
∆ = 121 + 4 . 1 . 620
∆ = 121 + 2480
∆ = 2601
n’ = -b + √∆ / 2a
n’= -11 + √2601 / 2 . 1
n’ = -11 + 51 / 2
n’ = 40 / 2
n’ = 20